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In a semi-infinite geometry, a one-dimensioridlcomponent model of biological evolution realizes micro-
scopically an inhomogeneous branching processMoer . This implies a size distribution exponemt
=7/4 for avalanches starting at a free, “dissipative” end of the evolutionary chain. A bulklike behavior with
7' =3/2 is restored by “conservative” boundary conditions. These are such as to strictly fix to its critical, bulk
value the average number of species directly involved in an evolutionary avalanche by the mutating species
located at the chain end. A two-site correlation function exponght=4 is also calculated exactly in the
“dissipative” case, when one of the points is at the border. Together with accurate numerical determinations
of the time recurrence exponett,s;, these results show also that, no matter whether dissipation is present or
not, boundary avalanches have the same space and time fractal dimensions as those in the bulk, and their
distribution exponents obey the basic scaling laws holding there.

PACS numbgs): 64.60.Ht, 64.60.Ak, 05.46-.a, 05.70.Jk

[. INTRODUCTION result, combined with numerical ones, allowed important
general scaling laws for self-organized critical behay®lr
Nature offers many examples of systems driven by soméo be verified. Such laws describe the connection between
external force towards an out-of-equilibrium state characterspace and time fractal properties of avalanches in the bulk.
ized by critical spatiotemporal correlatiof$]. In this sta- For models like sandpiles, SOC can be established by the
tionary state the accumulated stress is dissipated by avaffects of boundary dissipation, which balances the flux of
lanches of activity which occur intermittently and cover all added particleg1]. This basic circumstance, together with
spatial and temporal scales. Models of nonequilibrium criti-experience with standard criticality, called recent attention to
cal dynamics displaying such features have been proposdte boundary scaling properties of avalanchek12. Sur-
for several phenomena, ranging from earthqudRdgo in-  face scaling in sandpiles can be different from bulk scaling
terface depinnind3], or biological evolution in ecosystems and can also depend on the type of boundary conditions
[4]. (b.c.’s) considered. In sandpile models the obvious alterna-
Some models of self-organized criticalt8OC are char- tive to dissipative b.c’s is conditions in which part of the
acterized by extremal dynamics. Among these, the model dforder does not dissipate graifil]. For evolution models,
biological evolution introduced by Bak and Snepp@8)  which do not dissipate particles, it is not known whether
constitutes an important examgkg. Especially for a system boundary conditions could influence scaling at the border
with extremal dynamics, very few exact results are availableand, if so, what should correspond to conservation. These are
so far[5]. Most of our insight is based on numerical simu- issues we address in the present article.

lations, scaling argumen{$], or mean field solutions, re- Especially in the perspective of obtaining exact results,
lated in general to random neighbor versions of the modelthe study of boundary scaling should represent an important
[7]. step towards a deeper and more complete theoretical under-

Among the existing mean field approaches, a particularlystanding of SOC. In the present article, we show that the
rich and complete one, proposed recently, allows severdl = model of Ref.[10], if considered in the presence of
properties of avalanches, including some due to border efboundaries, provides a microscopic realization of the inho-
fects, to be described in terms of an inhomogeneous brancimogeneous BP introduced [8]. Besides immediately gen-
ing procesgBP) [8]. In view of its phenomenological char- eralizing results known for the BP to this model, this opens
acter, an open interesting problem within such an approachew possibilities for both analytical and numerical investiga-
remains the identification of specific microscopic models retions. In particular, by extending methods used previously
alizing the scalings of the inhomogeneous BP in some apfor the bulk [10], we are able to compute exactly the
propriate random neighbor or similar lin{i]. asymptotic two-point correlator when it involves a point on

A step towards establishing an analytical theory of scalinghe boundary in thél = limit. These results, together with
in extremal dynamics systems has been taken recently bgn accurate numerical analysis of time correlations at the
Boettcher and PaczuskiO], who computed exactly a corre- boundary, allow a complete scenario of the scalings obeyed
lation function of anM-component version of the BS evolu- by boundary and bulk exponents of the system to be drawn.
tion model in the limit whenM approaches infinity. This Boundary avalanches have different scaling properties for
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different boundary conditions. However, even in the case ofeflects the fact that, with our dynamical rules, the starting
a dissipative border, in which exponents differ from those inactive site(site j for which xj“z)\:absolute minimumcan
the bulk, space and time fractal dimensions of the avalanchesither activate one of its neighbors with probabiliy1
remain unaltered and satisfy the same basic scaling relations.\) or both of them with probabilitp\. In the two cases,
This paper is organized as follows. In the next sectionof course, one or two independent avalanches follow, respec-
after introducing the semi-infinité-component model, we tively, and the global avalanche grows up to a totabefl
discuss its relation to an inhomogeneous BP inthe-  activated sites. The above independence, which allows Eqg.
limit and derive a number of analytical and numerical results1) to be written in such a form, holds in tHd —oo limit,
for the properties of the size and spatial distribution. Thewhich is implicitly assumed here. Indeed, only in this limit is
third section is devoted to a discussion of exponents relateghe evolution of an avalanche completely unaffected by the
to the time recurrence of activity at the border. The last secfact that a given site has been previously involved in the

tion contains the conclusions. same, or another, avalanche. The effects of this kind of con-
dition can indeed be seen to amount to corrections of the
[l. SEMI-INFINITE BS EVOLUTION CHAIN order 1M, or higher, in the equations of motion.
WITH M=o COMPONENTS The b.c.’s complementing Edl) can be written in dif-

. . ferent ways. A first possibility is
The possible relevance of the BS model for evolution, as y P y

revealed, e.g., by paleontological recofd$], has been al- L=
ready discussed in the literature. Here we regard this model Pa(s+1)=APa(s). @

and its variants as an interesting mathematical frameworkrhiS means that, once the boundary site 1 becomes active, it

W'tc\'/ré \(':V:r:CST dgroa51 gﬁg?]rglﬁ;ﬁ%? sb;eifggl?gk.)ele d by an in Olec):(an then activate only site @ite 0 does not existand this
. L " ) Occurs with the usual rules as in the bulk. An alternative
i=1,2,3 ... . Each species is characterizedMbyndepen- boundary condition is

dent parameterstraity x;* («=1,2,... M, 0<x;*<1),

which quantify the ability of the species to survive in con-

nection withM different tasks it has to perform in the eco- Pu(sT1)=MI=MIP(s)+Pa(s)]

system. The closex;® is to 1, the higher the ability con- s
nected to thexth task, and thus the greater the chance that +2A2 2 P.(s")Py(s—s'), 3
the species avoids mutation. s'=0

The dynamics goes as follows. At every time step the . _
smallestx;®, i.e., the weakest among all the traits of all which means that for_the bqundary site, when active, the rule
species, is identified and replaced by 1. Each one of th€f settingx“=1, valid for j>1, does not apply. On the
species which are neighbors along the chain of that sitecontrary,j=1 andj=2 get now the random replacement of
i, With minimum x¢, get one of their traitfchosen at ©On€ of their traits, as sitgs-1 andj +1 m_the t_)ulk[s_ee Eq.
random among th& possible onesreplaced by new ran- (1)]. In other wqrds, thg role of the missing sjte 0 is now
dom numbers extracted independently and with uniformPlayed by the sitg=1 itself. _ _
probability in the interval (0,1). A new minimum is then _ It_|s straightforward to recognize that, up to minor n_10d|-
searched for and this proceeds so that at long times the sylications due to the convention assumed here of replacing the
tem self-organizes itself into a stationary state withxafl X @ssociated with the minimum trait by 1, Eq4) and (2)

uniformly distributed in an intervalX;,1). have the same structure as those describing the inhomoge-
A \ avalanche is identified with a sequence of mutationg'®0US E_’P n one_d|m~en3|c(l1D) of Ref. [8]. !-D’y mtroducmg
starting at sitei i, With X =X\, and continuing until the ~generating functionsP;(x) == _oPi(s)x%, i=1,2,..., it

current minimumx® remains belowh. We call the total Was found there thal(x)~1+c(1—-x)'" " for x—1",
number of minima with value below obtained during the WhenX=1/2. This value of\ implies an average number
avalanches (the duration of the ava|anche 2)\(1—)\)+2)\2:l of sites activated by each active site in
Rather then considering a translationally invariant situathe bulk and coincides with [10]. The average number of
tion as in Ref[10], we take here a semi-infinite chain, with Sites activated by the border site-1 is instead less than
a suitable b.c. The probability that in the stationary stake a Unity, according to Eq(2). By applying the methods of Ref.
avalanche has size will thus depend on the sitg¢ (j [8], one can show easily that, for=\.=1/2, P1~S’T',
=1,2,...),where the avalanche started. Omitting thee-  with 7' =7/4, whens— . This result holds independent of
pendence, we indicate such probability By(s). The above the convention assumed here of replacing the minimum trait

dynamical rules, foM — o, lead to by unity. The slightly different equations of RdB] reflect
the fact that there also the minimux% was replaced by a
Pi(s+1)=A1-MN[Pj+1(8)+Pj_1(s)] new random number. The asymptotic behavioPgfhas to
s be compared with the resuR..~s %2 [10] holding when
A2 Pji1(s))Pj_1(s—s"), j>1. the site where the avalanche starts is chosen in the bulk, and
s'=0 implying a mean field bulk exponent=3/2[7].
(1) We indicate byN(j,r) the probability that, at\=\.

=1/2, an avalanche started at giteever reaches site=]j.
Equation(1) is derived on the basis of the same consider\We are interested in the behavior Mffor j=1 and larger,
ations as those made made in Ré&D]. In first place Eq(1)  which is in turn related to the asymptotic radial distribution
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of avalanches starting at the border of the chain. The Mar-  1¢°
kovian nature of avalanche evolution leads to

. 11 .
NG =7+ 2INGH+L)+N(G—10)] 10 |
1
+aNG+LONG—1r), @ 7
;’*104
for 2<j<r—1. The b.c. in Eq(2) implies g

N(l,r)=%+%N(2,r), (5) 100 |

while, since obviouslyN(r,r)=0,

1 1
N(r=1r)= 7+ 7 N(r=2r). (6) log,q(s)

FIG. 1. The log-log plots of the integratedlistribution of ava-
lanches starting at site B4~.(s)= /<P (x)dx with b.c. (2) (dot9
and b.c.(3) (crosses

Next, we putN(j,r)=1—1f(j,r), so thatf represents the
probability that an avalanche starting in sjiteeaches site.
From the above equations, it follows that

) 1 ] ) with a different exponent when the starting point is at the
Af(jr)=5f(G=10f(+1r) 1<j<r-1, border with b.c.(2) is qualitatively consistent with what we
know of the two-point correlator at an equilibrium critical
1 3 point when one of the points is fixed at the boundary and not
Af(r=1r=5—zfr=2n), in the bulk[14].
The exact results above faf and 7 allow us to draw a
1 first conclusion on the space fractal dimensibri, of ava-
Af(Lr)=51(2r), (") Janches starting at a border with b(@). AssumingserP’
for such an avalanche leads B/ (1—7')=1— 75, which
whereAf(k,r) is the discrete Laplacian dfat sitek. Since  follows from P,(s)ds=Pg(r)dr. Thus, 7'=7/4 and 74
we are interested in the largebehavior, we can pass to a =4 imply D'=4. This dimension coincides with the bulk
continuum limit, introducing the variable=(j—1)/r. By  one, D, which satisfies the same kind of relati®(1— 7)

putting f(j,r)=y(z), we obtain from Eq(7) =1- 75 [10]. So, at the boundary, there is no distinct space
, fractal dimension for these avalanches, in spite of the differ-
y'(2) _ Y(Z), 0<z<1. (8  entrexponent. _ _
r 2 We verified the above result far' numerically, by simu-

_ N lating the model on open finite chains of length=200,
with “boundary - conditionsy’(1)/r =—3y(1)/4+1/2 and  yijth M=100 components. Figure 1 reports our finite-size
y'(0)/r=y(0)/2. Equation(8) can be integrated and, after data referring to avalanches starting at the border with b.c.’s
some algebra, one finds given by Eq.(2). The distribution is in good accord with the

expected 7’ =7/4 (we estimatedr’ =1.78+0.04). Direct
simulation allows us also to investigate the implications of
b.c. (3), which, as far asr’ is concerned, cannot be dealt
with analytically. For these b.c.’s, which keep the average
number of sites activated by the border site equal to 1, we
(9)  find numerically 7' =1.46+0.04, compatible withr'=r7
=3/2 (Fig. 1). Since the result’=7/4 should hold for the
B - _ ~_inhomogeneous BP as long aa&(@—\)+\?<1 [8], we
If the probability that a crmcral avalanche starting at site 1gnclude that’ = 7= 3/2 is peculiar to b.c(3). Consistently
reaches sita is Pr.(r)cr~r, we conclude thatr;=4, one can also show that, with b.€3), Tr=713=3 exactly.
from the fact thatf(1r)> [ Pg(x)dx. The above deriva- Thus, alsorg is restored to its bulk value by b.¢3). In the
tion extends the approach of Ré¢fL0], which yielded7r ~ SOC context, similar results were previously conjectured, on
=3 for the bulkPg(r). a numerical basis, for the Abelian sandpile in two dimen-
The presence of a border like that specified by the b.c. isions [11]. Indeed, for that model border avalanches ap-
Eqg. (2) would be expected to make avalanche propagatiopeared to possess a toppling distribution exponent rather
more difficult as compared to the bulk situation. Thus, theclose to the bulk value for a conservative border, while with
result 7,=4 is physically sound compared tey=3. The boundary dissipation a different applied[11]. Border dis-
fact that the radial probability distribution function decays sipativity in a BS evolution model should then be associated

3

6
f(l,r)=y(0):r—3{

fw dx
0 \/x3+1

5 2014...
= 3 .

2 1[T(13T(1/6)
T 9,3 T(1/2
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FIG. 2. Log-log plots ofPg,(r) for b.c. (2) (dotg and b.c.(3) FIG. 3. Log-log plots of the integrated first return time distribu-
(crosses tions in the case of b.¢2) (dot9 and b.c.(3) (crosses
with the fact that the average number of sites activated by the ;e — E (11)
extremal site is less than the critical bulk value. first D’

Figure 2 illustrates a numerical determination = for ] ] ] ]
avalanches starting with dissipative b(@). We obtainr, | hiS relation was first proposed in R¢6] for bulk expo-
—4.05+0.05 in good agreement with our exact result. With nents. The present derivation seems to be applicable also to

r_ R . avalanches starting at the border. THe1, M=« BS
?hg (e:f()avc\:/ti ,g_e:_rR_—ss.(('):iZ; 02')08’ compatible in this case with model is an ideal context in which to test its validity. In Ref.
R_ R_ . .

[10] a numerical estimate af;,s; was obtained which turned
out to be compatible with the value implied by relatigil)
lll. TIME FRACTAL PROPERTIES (7first=7/4). We made a similar determination ef,, for

avalanches starting at both dissipative and nondissipative

Avalanches of a BS model possess also time fractal propsgders. The data are plotted in Fig. 3, where one can clearly

erties, revealed, e.g., by the distribution of the first retumappreciate that the same values %if., apply in the two

times of the activi_ty_ in a gi\_/en sitime being me_asured by cases. Indeed, for conservative b.dEj. (3)] we estimate
the number of minima which are replaced during the ava-_, —171+0.03=7/4. With dissipative b.c’s there ap-
lanchg. Some general relations among exponents connectedirst” - ' ' . P o ap

with the time and space fractal behavior in the b8k can pears to be a Ion_ger transient before the asymptotic time
be easily derived by arguing as follows scaling behavior is established. However, we estimated

If we define asSy; «,(t) the probability distribution of first ~ Tfirst= 1-71+:0.04, clearly compatible again with 7/4. In
return times in a given site, and callT) the total number of both cases, of course, the bulk avalanches have a distribution

. . 3 ~ with 7¢;,6,=7/4.
returns in a Iap_se of t!mﬁ, we expech(T)eT, whered is Our results indicate that, like the space fractal dimension
a time fractal dimension, and

D’, the time fractal dimensiod’ of boundary avalanches is

- . also the same as its bulk counterpart, with all b.c.’s, and that
Eqg. (12) is always satisfied.

—— | Sfje(D)tdt. 10

n(T) L rrst(t) (10 In Ref. [8] a simulation of thed=1, M=1 BS model

yielded arj;,; sensibly different fromrs;,s,. If such a dis-

crepancy were confirmed by more systematic and asymptotic

determinations, one should suspect that the identity bf

. : . T andD, or even the validity of some scaling relations like Eq.

seqauent retlirns in a given site. We clearly hd.\fsa”.(t)dt (11), is somehow granted here by the peculiar, classical char-

«T%, so thatd=1— 7, and 7jrst+ 74 =2. At this point, t0  acter of theM = model. Anyhow, in such a case, a more

link space and time fractal properties it is sufficient to con-complex scaling scenario would certainly apply to the model
sider an avalanche as made of a totalsaéctivated sites  of Ref. [8].

within a d-dimensional hyperspherical region of radius
such thatsxrP. If the avalanche has time duratidnwe
must havess=rdn(t)=r%(r?), wherezis an exponent con-
necting space and time%r?). The last relation treats all The M-component BS model in the limiM —~ is an
lattice sites within the sphere as equivalent, as far as thiteresting theoretical laboratory for testing properties of the
return of activity is concerned. Now, since in our model SOC state. With the present work we were able to compute
=t by definition,z=D also applies. Eventually, one finds analytically ind=1 the exponents’ and 7 referring, re-

Upon puttingSy; s (t) ot~ first, we getd= 74— 1. Let us
then callS,;(t)«t™ "all the distribution of times for all sub-

IV. CONCLUSIONS
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spectively, to the size distribution and space correlation othe context of a model with extremal dynamics. In this model
avalanches starting at a border specified by 2¢. This  dissipation reveals an essential ingredient for the existence of
extends the previous results in REE0], which referred ex- a peculiar boundary scaling, distinct from the bulk one. In-
clusively to bulk properties. In addition our formulation al- dications that this could be a general feature of the SOC state
lowed a direct link between this model and the inhomoge-come also from previous numerical results for sandpilds
neous branching process discussed in R&l to be Our study of the return of activity at the border site re-
established. vealed that dissipativity does not determine a new boundary
The resultsr’ =7/4 andr;,=4 show that the space fractal 7¢;,; exponent, consistent with Eq11) and with the fact
dimensionD’ of border avalanches with b.¢2) remains  that, likeD’, for boundary avalanches algé remains unal-
equal to the bulk onel{’ =D =4), in spite of the change of tered with respect to its bulk value.
these exponents. Complemented by numerical tests, these re-Thjs contrasts with the numerical resuft, <, # Trirst Ob-
sults showed the existence of a clear-cut distinction betweepyined in Ref.[8] for M=1. Such a result, if confirmed by
the b.c. in Eq(2) and those expressed by Hg). In analogy  fyrther analysis, awaits to be elucidated.
with the physics of sandpile models, we were led to call b.c.
(2) dissipative, due to the fact that, in force of them, the
boundary site, on average, is able to transmit activity to less
than one site, even if the bulk is critical. This dissipativity is
responsible for boundary values of the exponeritand 75 A.L.S. wishes to thank MIT, and M. Kardar in particular,
different from the bulk ones. On the other hand, when b.c.’dor hospitality within the INFNltaly)-MIT “Bruno Rossi”
are conservative in the sense specified by By.the exis- exchange program. Partial support from the European Net-
tence of a geometrical boundary is not sufficient to determinavork Contract No. ERBFMRXCT980/83 is also acknowl-
a different scaling from the bulk. edged. This research was supported by Flemish FWO Project
Border dissipation, which for models like sandpiles is aNo. G.0277.97 and by the Inter-University Attraction Poles
necessary condition for the very establishment of the stationand the Concerted Action Program. We thank H. Dobbs and
ary SOC state, could be given here a precise meaning also R. Mohayaee for a critical reading of the manuscript.
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