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Boundary spatiotemporal correlations in a self-organized critical model
of punctuated equilibrium
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In a semi-infinite geometry, a one-dimensional,M-component model of biological evolution realizes micro-
scopically an inhomogeneous branching process forM→`. This implies a size distribution exponentt8
57/4 for avalanches starting at a free, ‘‘dissipative’’ end of the evolutionary chain. A bulklike behavior with
t853/2 is restored by ‘‘conservative’’ boundary conditions. These are such as to strictly fix to its critical, bulk
value the average number of species directly involved in an evolutionary avalanche by the mutating species
located at the chain end. A two-site correlation function exponenttR854 is also calculated exactly in the
‘‘dissipative’’ case, when one of the points is at the border. Together with accurate numerical determinations
of the time recurrence exponentt f irst8 , these results show also that, no matter whether dissipation is present or
not, boundary avalanches have the same space and time fractal dimensions as those in the bulk, and their
distribution exponents obey the basic scaling laws holding there.

PACS number~s!: 64.60.Ht, 64.60.Ak, 05.40.2a, 05.70.Jk
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I. INTRODUCTION

Nature offers many examples of systems driven by so
external force towards an out-of-equilibrium state charac
ized by critical spatiotemporal correlations@1#. In this sta-
tionary state the accumulated stress is dissipated by
lanches of activity which occur intermittently and cover
spatial and temporal scales. Models of nonequilibrium cr
cal dynamics displaying such features have been propo
for several phenomena, ranging from earthquakes@2# to in-
terface depinning@3#, or biological evolution in ecosystem
@4#.

Some models of self-organized criticality~SOC! are char-
acterized by extremal dynamics. Among these, the mode
biological evolution introduced by Bak and Sneppen~BS!
constitutes an important example@4#. Especially for a system
with extremal dynamics, very few exact results are availa
so far @5#. Most of our insight is based on numerical sim
lations, scaling arguments@6#, or mean field solutions, re
lated in general to random neighbor versions of the mod
@7#.

Among the existing mean field approaches, a particula
rich and complete one, proposed recently, allows sev
properties of avalanches, including some due to border
fects, to be described in terms of an inhomogeneous bra
ing process~BP! @8#. In view of its phenomenological char
acter, an open interesting problem within such an appro
remains the identification of specific microscopic models
alizing the scalings of the inhomogeneous BP in some
propriate random neighbor or similar limit@9#.

A step towards establishing an analytical theory of scal
in extremal dynamics systems has been taken recently
Boettcher and Paczuski@10#, who computed exactly a corre
lation function of anM-component version of the BS evolu
tion model in the limit whenM approaches infinity. This
PRE 611063-651X/2000/61~1!/293~5!/$15.00
e
r-

a-

-
ed

of

le

ls

ly
al
f-
h-

ch
-
p-

g
by

result, combined with numerical ones, allowed importa
general scaling laws for self-organized critical behavior@6#
to be verified. Such laws describe the connection betw
space and time fractal properties of avalanches in the bu

For models like sandpiles, SOC can be established by
effects of boundary dissipation, which balances the flux
added particles@1#. This basic circumstance, together wi
experience with standard criticality, called recent attention
the boundary scaling properties of avalanches@11,12#. Sur-
face scaling in sandpiles can be different from bulk scal
and can also depend on the type of boundary conditi
~b.c.’s! considered. In sandpile models the obvious alter
tive to dissipative b.c’s is conditions in which part of th
border does not dissipate grains@11#. For evolution models,
which do not dissipate particles, it is not known wheth
boundary conditions could influence scaling at the bor
and, if so, what should correspond to conservation. These
issues we address in the present article.

Especially in the perspective of obtaining exact resu
the study of boundary scaling should represent an impor
step towards a deeper and more complete theoretical un
standing of SOC. In the present article, we show that
M5` model of Ref.@10#, if considered in the presence o
boundaries, provides a microscopic realization of the in
mogeneous BP introduced in@8#. Besides immediately gen
eralizing results known for the BP to this model, this ope
new possibilities for both analytical and numerical investig
tions. In particular, by extending methods used previou
for the bulk @10#, we are able to compute exactly th
asymptotic two-point correlator when it involves a point o
the boundary in theM5` limit. These results, together with
an accurate numerical analysis of time correlations at
boundary, allow a complete scenario of the scalings obe
by boundary and bulk exponents of the system to be dra
Boundary avalanches have different scaling properties
293 ©2000 The American Physical Society
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different boundary conditions. However, even in the case
a dissipative border, in which exponents differ from those
the bulk, space and time fractal dimensions of the avalanc
remain unaltered and satisfy the same basic scaling relat

This paper is organized as follows. In the next secti
after introducing the semi-infiniteM-component model, we
discuss its relation to an inhomogeneous BP in theM→`
limit and derive a number of analytical and numerical resu
for the properties of the size and spatial distribution. T
third section is devoted to a discussion of exponents rela
to the time recurrence of activity at the border. The last s
tion contains the conclusions.

II. SEMI-INFINITE BS EVOLUTION CHAIN
WITH M 5` COMPONENTS

The possible relevance of the BS model for evolution,
revealed, e.g., by paleontological records@13#, has been al-
ready discussed in the literature. Here we regard this mo
and its variants as an interesting mathematical framew
within which SOC dynamics can be studied.

We consider an open chain of species, labeled by an in
i 51,2,3 . . . . Each species is characterized byM indepen-
dent parameters~traits! xi

a (a51,2, . . . ,M , 0,xi
a,1),

which quantify the ability of the species to survive in co
nection withM different tasks it has to perform in the ec
system. The closerxi

a is to 1, the higher the ability con
nected to theath task, and thus the greater the chance t
the species avoids mutation.

The dynamics goes as follows. At every time step
smallestxi

a , i.e., the weakest among all the traits of a
species, is identified and replaced by 1. Each one of
species which are neighbors along the chain of that s
i min , with minimum xa, get one of their traits~chosen at
random among theM possible ones! replaced by new ran
dom numbers extracted independently and with unifo
probability in the interval (0,1). A new minimum is the
searched for and this proceeds so that at long times the
tem self-organizes itself into a stationary state with allxi

a

uniformly distributed in an interval (lc ,1).
A l avalanche is identified with a sequence of mutatio

starting at sitei min with xi min

a 5l, and continuing until the

current minimumxa remains belowl. We call the total
number of minima with value belowl obtained during the
avalanche,s ~the duration of the avalanche!.

Rather then considering a translationally invariant sit
tion as in Ref.@10#, we take here a semi-infinite chain, wit
a suitable b.c. The probability that in the stationary statel
avalanche has sizes will thus depend on the sitej ( j
51,2, . . . ),where the avalanche started. Omitting thel de-
pendence, we indicate such probability byPj (s). The above
dynamical rules, forM→`, lead to

Pj~s11!5l~12l!@Pj 11~s!1Pj 21~s!#

1l2 (
s850

s

Pj 11~s8!Pj 21~s2s8!, j .1.

~1!

Equation~1! is derived on the basis of the same consid
ations as those made made in Ref.@10#. In first place Eq.~1!
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reflects the fact that, with our dynamical rules, the start
active site~site j for which xj

a5l5absolute minimum! can
either activate one of its neighbors with probabilityl(1
2l) or both of them with probabilityl2. In the two cases,
of course, one or two independent avalanches follow, resp
tively, and the global avalanche grows up to a total ofs11
activated sites. The above independence, which allows
~1! to be written in such a form, holds in theM→` limit,
which is implicitly assumed here. Indeed, only in this limit
the evolution of an avalanche completely unaffected by
fact that a given site has been previously involved in
same, or another, avalanche. The effects of this kind of c
dition can indeed be seen to amount to corrections of
order 1/M , or higher, in the equations of motion.

The b.c.’s complementing Eq.~1! can be written in dif-
ferent ways. A first possibility is

P1~s11!5lP2~s!. ~2!

This means that, once the boundary site 1 becomes activ
can then activate only site 2~site 0 does not exist!, and this
occurs with the usual rules as in the bulk. An alternat
boundary condition is

P1~s11!5l~12l!@P1~s!1P2~s!#

1l2 (
s850

s

P1~s8!P2~s2s8!, ~3!

which means that for the boundary site, when active, the
of setting xa51, valid for j .1, does not apply. On the
contrary,j 51 and j 52 get now the random replacement
one of their traits, as sitesj 21 andj 11 in the bulk@see Eq.
~1!#. In other words, the role of the missing sitej 50 is now
played by the sitej 51 itself.

It is straightforward to recognize that, up to minor mod
fications due to the convention assumed here of replacing
x associated with the minimum trait by 1, Eqs.~1! and ~2!
have the same structure as those describing the inhom
neous BP in one dimension~1D! of Ref. @8#. By introducing
generating functionsP̃i(x)5(s50

` Pi(s)xs, i 51,2, . . . , it

was found there thatP̃1(x);11c(12x)127/4, for x→12,
when l51/2. This value ofl implies an average numbe
2l(12l)12l251 of sites activated by each active site
the bulk and coincides withlc @10#. The average number o
sites activated by the border sitei 51 is instead less than
unity, according to Eq.~2!. By applying the methods of Ref
@8#, one can show easily that, forl5lc51/2, P1;s2t8,
with t857/4, whens→`. This result holds independent o
the convention assumed here of replacing the minimum t
by unity. The slightly different equations of Ref.@8# reflect
the fact that there also the minimumxa was replaced by a
new random number. The asymptotic behavior ofP1 has to
be compared with the resultP`;s23/2 @10# holding when
the site where the avalanche starts is chosen in the bulk,
implying a mean field bulk exponentt53/2 @7#.

We indicate byN( j ,r ) the probability that, atl5lc
51/2, an avalanche started at sitej never reaches siter> j .
We are interested in the behavior ofN for j 51 and larger,
which is in turn related to the asymptotic radial distributio
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of avalanches starting at the border of the chain. The M
kovian nature of avalanche evolution leads to

N~ j ,r !5
1

4
1

1

4
@N~ j 11,r !1N~ j 21,r !#

1
1

4
N~ j 11,r !N~ j 21,r !, ~4!

for 2, j ,r 21. The b.c. in Eq.~2! implies

N~1,r !5
1

2
1

1

2
N~2,r !, ~5!

while, since obviouslyN(r ,r )50,

N~r 21,r !5
1

4
1

1

4
N~r 22,r !. ~6!

Next, we putN( j ,r )512 f ( j ,r ), so that f represents the
probability that an avalanche starting in sitej reaches siter.
From the above equations, it follows that

D f ~ j ,r !5
1

2
f ~ j 21,r ! f ~ j 11,r ! 1, j ,r 21,

D f ~r 21,r !5
1

2
2

3

4
f ~r 22,r !,

D f ~1,r !5
1

2
f ~2,r !, ~7!

whereD f (k,r ) is the discrete Laplacian off at sitek. Since
we are interested in the larger behavior, we can pass to
continuum limit, introducing the variablez5( j 21)/r . By
putting f ( j ,r )5y(z), we obtain from Eq.~7!

y9~z!

r
5

y~z!

2
, 0,z,1, ~8!

with boundary conditionsy8(1)/r 523y(1)/411/2 and
y8(0)/r 5y(0)/2. Equation~8! can be integrated and, afte
some algebra, one finds

f ~1,r !5y~0!.
6

r 3 F E0

` dx

Ax311
G 3

.
2

9

1

r 3 FG~1/3!G~1/6!

G~1/2! G3

.
20.14 . . .

r 3
. ~9!

If the probability that a critical avalanche starting at site

reaches siter is PR1(r )}r 2tR8 , we conclude thattR854,
from the fact thatf (1,r )}* r

`PR1(x)dx. The above deriva-
tion extends the approach of Ref.@10#, which yieldedtR
53 for the bulkPR(r ).

The presence of a border like that specified by the b.c
Eq. ~2! would be expected to make avalanche propaga
more difficult as compared to the bulk situation. Thus,
result tR854 is physically sound compared totR53. The
fact that the radial probability distribution function deca
r-

in
n

e

with a different exponent when the starting point is at t
border with b.c.~2! is qualitatively consistent with what we
know of the two-point correlator at an equilibrium critica
point when one of the points is fixed at the boundary and
in the bulk @14#.

The exact results above fort8 andtR8 allow us to draw a
first conclusion on the space fractal dimension,D8, of ava-
lanches starting at a border with b.c.~2!. Assumings}r D8

for such an avalanche leads toD8(12t8)512tR8 , which
follows from P1(s)ds5PR1(r )dr. Thus, t857/4 and tR8
54 imply D854. This dimension coincides with the bul
one, D, which satisfies the same kind of relationD(12t)
512tR @10#. So, at the boundary, there is no distinct spa
fractal dimension for these avalanches, in spite of the diff
ent t exponent.

We verified the above result fort8 numerically, by simu-
lating the model on open finite chains of lengthN5200,
with M5100 components. Figure 1 reports our finite-si
data referring to avalanches starting at the border with b.
given by Eq.~2!. The distribution is in good accord with th
expectedt857/4 ~we estimatedt851.7860.04). Direct
simulation allows us also to investigate the implications
b.c. ~3!, which, as far ast8 is concerned, cannot be dea
with analytically. For these b.c.’s, which keep the avera
number of sites activated by the border site equal to 1,
find numerically t851.4660.04, compatible witht85t
53/2 ~Fig. 1!. Since the resultt857/4 should hold for the
inhomogeneous BP as long as 2l(12l)1l2,1 @8#, we
conclude thatt85t53/2 is peculiar to b.c.~3!. Consistently
one can also show that, with b.c.~3!, tR85tR53 exactly.
Thus, alsotR8 is restored to its bulk value by b.c.~3!. In the
SOC context, similar results were previously conjectured,
a numerical basis, for the Abelian sandpile in two dime
sions @11#. Indeed, for that model border avalanches a
peared to possess a toppling distribution exponent ra
close to the bulk value for a conservative border, while w
boundary dissipation a differentt8 applied@11#. Border dis-
sipativity in a BS evolution model should then be associa

FIG. 1. The log-log plots of the integrateds distribution of ava-
lanches starting at site 1,P1.(s)5*s

`P(x)dx with b.c. ~2! ~dots!
and b.c.~3! ~crosses!.
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with the fact that the average number of sites activated by
extremal site is less than the critical bulk value.

Figure 2 illustrates a numerical determination oftR8 for
avalanches starting with dissipative b.c.~2!. We obtaintR8
54.0560.05 in good agreement with our exact result. W
b.c. ~3! we gettR853.0260.08, compatible in this case wit
the exacttR85tR53 ~Fig. 2!.

III. TIME FRACTAL PROPERTIES

Avalanches of a BS model possess also time fractal p
erties, revealed, e.g., by the distribution of the first retu
times of the activity in a given site~time being measured b
the number of minima which are replaced during the a
lanche!. Some general relations among exponents conne
with the time and space fractal behavior in the bulk@6# can
be easily derived by arguing as follows.

If we define asSf irst(t) the probability distribution of first
return times in a given site, and calln(T) the total number of
returns in a lapse of timeT, we expectn(T)}Td̃, whered̃ is
a time fractal dimension, and

T

n~T!
}E

1

T

Sf irst~ t !tdt. ~10!

Upon puttingSf irst(t)}t2t f irst, we getd̃5t f irst21. Let us
then callSall(t)}t2tall the distribution of times for all sub
sequent returns in a given site. We clearly have*1

TSall(t)dt

}Td̃, so thatd̃512tall andt f irst1tall52. At this point, to
link space and time fractal properties it is sufficient to co
sider an avalanche as made of a total ofs activated sites
within a d-dimensional hyperspherical region of radiusr
such thats}r D. If the avalanche has time durationt, we
must haves}r dn(t)5r dn(r z), wherez is an exponent con
necting space and time (t}r z). The last relation treats al
lattice sites within the sphere as equivalent, as far as
return of activity is concerned. Now, since in our modes
5t by definition,z5D also applies. Eventually, one finds

FIG. 2. Log-log plots ofPR1(r ) for b.c. ~2! ~dots! and b.c.~3!
~crosses!.
e

p-
n

-
ed

-

e

t f irst522
d

D
. ~11!

This relation was first proposed in Ref.@6# for bulk expo-
nents. The present derivation seems to be applicable als
avalanches starting at the border. Thed51, M5` BS
model is an ideal context in which to test its validity. In Re
@10# a numerical estimate oft f irst was obtained which turned
out to be compatible with the value implied by relation~11!
(t f irst57/4). We made a similar determination oft f irst8 for
avalanches starting at both dissipative and nondissipa
borders. The data are plotted in Fig. 3, where one can cle
appreciate that the same values oft f irst8 apply in the two
cases. Indeed, for conservative b.c.’s@Eq. ~3!# we estimate
t f irst8 51.7160.03.7/4. With dissipative b.c.’s there ap
pears to be a longer transient before the asymptotic t
scaling behavior is established. However, we estima
t f irst8 51.7160.04, clearly compatible again with 7/4. I
both cases, of course, the bulk avalanches have a distribu
with t f irst.7/4.

Our results indicate that, like the space fractal dimens
D8, the time fractal dimensiond̃8 of boundary avalanches i
also the same as its bulk counterpart, with all b.c.’s, and
Eq. ~11! is always satisfied.

In Ref. @8# a simulation of thed51, M51 BS model
yielded at f irst8 sensibly different fromt f irst . If such a dis-
crepancy were confirmed by more systematic and asymp
determinations, one should suspect that the identity ofD8
andD, or even the validity of some scaling relations like E
~11!, is somehow granted here by the peculiar, classical c
acter of theM5` model. Anyhow, in such a case, a mo
complex scaling scenario would certainly apply to the mo
of Ref. @8#.

IV. CONCLUSIONS

The M-component BS model in the limitM→` is an
interesting theoretical laboratory for testing properties of
SOC state. With the present work we were able to comp
analytically in d51 the exponentst8 and tR8 referring, re-

FIG. 3. Log-log plots of the integrated first return time distrib
tions in the case of b.c.~2! ~dots! and b.c.~3! ~crosses!.
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spectively, to the size distribution and space correlation
avalanches starting at a border specified by b.c.~2!. This
extends the previous results in Ref.@10#, which referred ex-
clusively to bulk properties. In addition our formulation a
lowed a direct link between this model and the inhomo
neous branching process discussed in Ref.@8# to be
established.

The resultst857/4 andtR854 show that the space fracta
dimensionD8 of border avalanches with b.c.~2! remains
equal to the bulk one (D85D54), in spite of the change o
these exponents. Complemented by numerical tests, thes
sults showed the existence of a clear-cut distinction betw
the b.c. in Eq.~2! and those expressed by Eq.~3!. In analogy
with the physics of sandpile models, we were led to call b
~2! dissipative, due to the fact that, in force of them, t
boundary site, on average, is able to transmit activity to l
than one site, even if the bulk is critical. This dissipativity
responsible for boundary values of the exponentst8 andtR8
different from the bulk ones. On the other hand, when b.
are conservative in the sense specified by Eq.~3!, the exis-
tence of a geometrical boundary is not sufficient to determ
a different scaling from the bulk.

Border dissipation, which for models like sandpiles is
necessary condition for the very establishment of the stat
ary SOC state, could be given here a precise meaning als
et

-

f

-

re-
n

.

s

s

e

n-
in

the context of a model with extremal dynamics. In this mod
dissipation reveals an essential ingredient for the existenc
a peculiar boundary scaling, distinct from the bulk one.
dications that this could be a general feature of the SOC s
come also from previous numerical results for sandpiles@11#.

Our study of the return of activity at the border site r
vealed that dissipativity does not determine a new bound
t f irst8 exponent, consistent with Eq.~11! and with the fact

that, likeD8, for boundary avalanches alsod̃8 remains unal-
tered with respect to its bulk value.

This contrasts with the numerical resultt f irst8 Þt f irst ob-
tained in Ref.@8# for M51. Such a result, if confirmed by
further analysis, awaits to be elucidated.
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